Neurobiology
print


Breadcrumb Navigation


Content

A novel approach identifies the first transcriptome networks in bats: a new genetic model for vocal communication

BMC Genomics 16: 836. doi: 10.1186/s12864-015-2068-1.

Authors/Editors: Rodenas-Cuadrado P
Chen XS
Wiegrebe L
Firzlaff U
Vernes SC
Publication Date: 2015
Type of Publication: Journal Articles 2001 - 2017

Abstract

BACKGROUND:

Bats are able to employ an astonishingly complex vocal repertoire for navigating their environment and conveying social information. A handful of species also show evidence for vocal learning, an extremely rare ability shared only with humans and few other animals. However, despite their potential for the study of vocal communication, bats remain severely understudied at a molecular level. To address this fundamental gap we performed the first transcriptome profiling and genetic interrogation of molecular networks in the brain of a highly vocal bat species, Phyllostomus discolor.

RESULTS:

Gene network analysis typically needs large sample sizes for correct clustering, this can be prohibitive where samples are limited, such as in this study. To overcome this, we developed a novel bioinformatics methodology for identifying robust co-expression gene networks using few samples (N=6). Using this approach, we identified tissue-specific functional gene networks from the bat PAG, a brain region fundamental for mammalian vocalisation. The most highly connected network identified represented a cluster of genes involved in glutamatergic synaptic transmission. Glutamatergic receptors play a significant role in vocalisation from the PAG, suggesting that this gene network may be mechanistically important for vocal-motor control in mammals.

CONCLUSION:

We have developed an innovative approach to cluster co-expressing gene networks and show that it is highly effective in detecting robust functional gene networks with limited sample sizes. Moreover, this work represents the first gene network analysis performed in a bat brain and establishes bats as a novel, tractable model system for understanding the genetics of vocal mammalian communication.

Related Links